CancerScreen Panels
Highly optimized NGS panel for somatic cancer
Overview
CancerScreen Panel Core/50/100/400/Comprehensive
CancerScreen panel is an NGS assay designed to detect all types of variants for up to 765 genes associated with somatic cancer. Targeting the selected genes with high sensitivity and specificity enables saving cost and effort.
Celemics provides full exclusive bioinformatics support.
The generated report consists of the primary, secondary, and tertiary results for the in-depth understanding and interpretation of sequencing data.
Also, if the gene of interest does not exist in the panel, it can be added separately through our gene add-on service
Optimized Comprehensive Panel for Solid Cancer Analysis
The panel is designed to assess the whole CDS region (RefSeq) of up to 765 genes
and rearrangement regions associated with solid cancer. Using the CancerScreen panel,
you can detect all mutation types, including SNV, Indel, Large Inde, CNV, rearrangements, MSI, and TMB as well as other immuno-oncology markers in a single assay.
Performance Comparison with Competitor Product
- Higher on-target ratio, uniformity, coverage at 100X compared to competitor product over the target regions including exons and introns
Superior Sensitivity and Specificity
CancerScreen panel is suitable for detecting low-frequency and rare variants with high sequencing depths. With Celemics’ proprietary probe design technology, it provides superior capture performance even in GC-rich and homologous regions or any type of clinical samples, such as poor-quality FFPE or ctDNA with the highest sensitivity and specificity.
Maximized Sequencing Efficiency
Celemics’ assay and reagent optimization technology will significantly increase the sequencing efficiency while maintaining the market leading on-target ratio and uniformity. Also, the precisely optimized and balanced chemistry will allow panels and kits to be compatible with various sequencing platform of your choice at much reduced sequencing cost compared to other competitor products.
Performance Comparison over GC-rich Regions
- More uniform read depths over GC-rich regions compared to competitor products.
Specification
Gene count* | 13/54/99/407/706 genes |
---|---|
Target size | 61/197/299/1,123/2,521 kb + Rearrangement |
Mutation type | SNV, Indel, CNV, Rearrangement, MSI, TMB |
Sample type(amount) | FFPE, frozen tissue, cfDNA, RNA |
Platform | All sequencers from Illumina, Thermo Fisher, MGI, PacBio, and Oxford Nanopore |
Bioinformatics Support | ① Primary Analysis: FASTQ to annotated VCF ② Secondary Analysis: CNV, Large InDel ③ Tertiary Analysis: Clinical interpretation |
Specification - Gene List
- 13 genes | Gene count
- 61 kb | Target Size
- Whole CDS, Rearrangement | Target Region
ALK | APC | BRAF | EGFR | ERBB2 | KRAS | MET | NRAS | PIK3CA | RET | ROS1 | SMAD4 | TP53 |
- 54 genes | Gene count
- 197 kb | Target Size
- Whole CDS, Rearrangement | Target Region
ABL1 | AKT1 | ALK | APC | ATM | BRAF | BRCA1 | BRCA2 | CDH1 | CDK4 | CDK6 | CDKN2A |
CSF1R | CTNNB1 | DDR2 | EGFR | ERBB2 | ERBB4 | ESR1 | FGFR1 | FGFR2 | FGFR3 | GNA11 | GNAQ |
GNAS | HRAS | IDH1 | IDH2 | JAK2 | KDR | KIT | KRAS | MAP2K1 | MET | MLH1 | MTOR |
MYC | MYCN | NOTCH1 | NRAS | NTRK1 | PDGFRA | PIK3CA | PTCH1 | PTEN | PTPN11 | RB1 | RET |
ROS1 | SMAD4 | SMO | SRC | STK11 | TP53 |
- 99 genes | Gene count
- 299 kb | Target Size
- CDS | Target Region
ABL1 | AKT1 | AKT2 | AKT3 | ALK | APC | ARID1A | ARID1B | ARID2 | ATM | ATRX | AURKA |
AURKB | BARD1 | BCL2 | BLM | BMPR1A | BRAF | BRCA1 | BRCA2 | BRIP1 | CDH1 | CDK4 | CDK6 |
CDKN2A | CHEK2 | CSF1R | CTNNB1 | DDR2 | EGFR | EPCAM | EPHB4 | ERBB2 | ERBB3 | ERBB4 | EZH2 |
FBXW7 | FGFR1 | FGFR2 | FGFR3 | FLT3 | GNA11 | GNAQ | GNAS | HNF1A | HRAS | IDH1 | IDH2 |
IGF1R | ITK | JAK1 | JAK2 | JAK3 | KDR | KIT | KRAS | MDM2 | MET | MLH1 | MPL |
MRE11 | MSH2 | MSH6 | MTOR | MUTYH | NBN | NF1 | NOTCH1 | NPM1 | NRAS | NTRK1 | PALB2 |
PDGFRA | PDGFRB | PIK3CA | PIK3R1 | PMS2 | PRSS1 | PTCH1 | PTCH2 | PTEN | PTPN11 | RAD50 | RAD51C |
RAD51D | RB1 | RET | ROS1 | SLX4 | SMAD4 | SMARCB1 | SMO | SRC | STK11 | SYK | TERT |
TOP1 | TP53 | VHL |
- 407 genes | Gene count
- 1,123 kb | Target Size
- CDS | Target Region
ABL1 | ABL2 | ADGRA2 | AKT1 | AKT2 | AKT3 | ALK | AMER1 | APC | APCDD1 | APEX1 | APOB |
APOBEC1 | AR | ARAF | ARFRP1 | ARID1A | ARID1B | ARID2 | ASXL1 | ATM | ATP11B | ATR | ATRX |
AURKA | AURKB | AXIN1 | AXL | B2M | B3GAT1 | BACH1 | BAP1 | BARD1 | BCL2 | BCL6 | BCL9 |
BCOR | BCR | BIRC2 | BIRC3 | BLM | BRAF | BRCA1 | BRCA2 | BRD2 | BRD3 | BRD4 | BRIP1 |
BTG1 | BTK | BTLA | CARD11 | CASP5 | CASP8 | CBFB | CBL | CD274 | CDK12 | CDK4 | CDK6 |
CDK8 | CDKN1A | CDKN1B | CDKN2A | CDKN2B | CDKN2C | CDX2 | CEBPA | CHD1 | CHD2 | CHD4 | CHEK1 |
CHEK2 | CHUK | CIC | CRBN | CREBBP | CRKL | CRLF2 | CSF1R | CSF2 | CSF2RA | CSF2RB | CSNK2A1 |
CTCF | CTLA4 | CTNNA1 | CTNNB1 | CUL3 | CUL4A | CUL4B | CXCL10 | CXCL11 | CXCL9 | CXCR3 | CYLD |
CYP17A1 | DAXX | DCUN1D1 | DDR2 | DICER1 | DIS3 | DNMT1 | DNMT3A | DOCK2 | DOT1L | EGFR | ELMO1 |
EML4 | EMSY | EP300 | EPHA3 | EPHA5 | EPHA6 | EPHA7 | EPHB1 | EPHB4 | EPHB6 | ERBB2 | ERBB3 |
ERBB4 | ERCC1 | ERCC2 | ERG | ERRFI1 | ESR1 | ETV1 | ETV4 | ETV5 | ETV6 | EWSR1 | EYA2 |
EZH2 | FANCA | FANCC | FANCD2 | FANCE | FANCF | FANCG | FANCI | FANCL | FANCM | FAS | FAT1 |
FAT3 | FBXW7 | FGF1 | FGF10 | FGF12 | FGF14 | FGF19 | FGF2 | FGF23 | FGF3 | FGF4 | FGF6 |
FGF7 | FGFR1 | FGFR2 | FGFR3 | FGFR4 | FH | FLCN | FLT1 | FLT3 | FLT4 | FOXA1 | FOXL2 |
FOXO3 | FOXP3 | FRS2 | FUBP1 | GABRA6 | GAS6 | GATA1 | GATA2 | GATA3 | GATA4 | GATA6 | GID4 |
GLI1 | GNA11 | GNA13 | GNAQ | GNAS | GRIN2A | GRM3 | GSK3B | GUCY1A2 | GZMA | GZMB | GZMH |
H3F3A | HGF | HIST1H3B | HNF1A | HOXA3 | HRAS | HSD3B1 | HSP90AA1 | IDH1 | IDH2 | IDO1 | IDO2 |
IFITM1 | IFITM3 | IFNA1 | IFNB1 | IFNG | IGF1 | IGF1R | IGF2 | IGF2R | IKBKE | IKZF1 | IL12A |
IL12B | IL2 | IL23A | IL6 | IL7R | INHBA | INPP4B | INSR | IRF2 | IRF4 | IRS2 | ITGAE |
ITK | JAK1 | JAK2 | JAK3 | JUN | KAT6A | KDM5A | KDM5C | KDM6A | KDR | KEAP1 | KEL |
KIT | KLF4 | KLHL6 | KMT2A | KMT2B | KMT2C | KNSTRN | KRAS | LAG3 | LMO1 | LRP1B | LRP6 |
LTK | LYN | LZTR1 | MAGI2 | MAGOH | MAML1 | MAP2K1 | MAP2K2 | MAP2K4 | MAP3K1 | MAP3K13 | MAPK1 |
MAX | MCL1 | MDM2 | MDM4 | MED12 | MEF2B | MEN1 | MET | MITF | MLH1 | MPL | MRE11 |
MSH2 | MSH6 | MTOR | MUTYH | MYB | MYC | MYCL | MYCN | MYD88 | MYO18A | NCOA3 | NCOR1 |
NF1 | NF2 | NFE2L2 | NFKBIA | NOTCH1 | NOTCH2 | NOTCH3 | NOTCH4 | NPM1 | NRAS | NSD1 | NSD3 |
NTRK1 | NTRK2 | NTRK3 | NUP93 | NUTM1 | PAK3 | PAK5 | PALB2 | PARP1 | PARP2 | PARP3 | PARP4 |
PAX5 | PBRM1 | PDCD1 | PDCD1LG2 | PDGFRA | PDGFRB | PDK1 | PGR | PHF6 | PHLPP2 | PIK3C2B | PIK3C3 |
PIK3CA | PIK3CB | PIK3CG | PIK3R2 | PKHD1 | PLCG1 | PLCG2 | PMS2 | PNP | PNRC1 | POLD1 | POLE |
PPARG | PPP2R1A | PRDM1 | PREX2 | PRF1 | PRKAR1A | PRKCI | PRKDC | PRPF40B | PRSS8 | PTCH1 | PTCH2 |
PTEN | PTK2 | PTPN11 | PTPRC | PTPRD | QKI | RAB35 | RAC1 | RAC2 | RAD17 | RAD50 | RAD51 |
RAD52 | RAD54L | RAF1 | RANBP2 | RARA | RB1 | RBM10 | REL | RET | RHEB | RHOA | RHOB |
RICTOR | ROBO1 | ROBO2 | ROS1 | RPA1 | RPS6KB1 | RPTOR | RUNX1 | RUNX1T1 | RUNX3 | SDHA | SDHB |
SDHC | SDHD | SEMA3A | SEMA3E | SET | SETBP1 | SETD2 | SF3A1 | SF3B1 | SH2B3 | SKP2 | SLIT2 |
SMAD2 | SMAD3 | SMAD4 | SRSF2 | SRSF7 | STAG2 | STAT3 | STAT4 | TERT | TET2 | TP53 |
- 706 genes (697 genes for DNA, 68 genes for RNA) | Gene count
- 2.32 Mb (DNA), 201 Kb (RNA) | Target Size
- CDS, Hotspot variant, UTR, Intronic, Intergenic regions, and MSI markers | Target Region
[DNA – Gene List]
ABL1 | ABL2 | ABRAXAS1 | ACVR1 | ACVR1B | ACVR2A | ADAM29 | ADGRA2 | ADTRP | AKT1 | AKT2 | AKT3 |
ALK | ALOX12B | ALOX15B | AMER1 | ANKRD11 | ANKRD26 | APC | APCDD1 | APEX1 | APOB | APOBEC1 | APOBEC3A |
APOBEC3B | AR | ARAF | ARFRP1 | ARID1A | ARID1B | ARID2 | ARID5B | ASTE1 | ASXL1 | ASXL2 | ATM |
ATP11B | ATR | ATRX | AURKA | AURKB | AXIN1 | AXIN2 | AXL | B2M | B3GAT1 | BACH1 | BAP1 |
BARD1 | BAX | BBC3 | BCL10 | BCL2 | BCL2A1 | BCL2L1 | BCL2L11 | BCL2L2 | BCL6 | BCL9 | BCOR |
BCORL1 | BCR | BEX5 | BIRC2 | BIRC3 | BLM | BMPR1A | BRAF | BRCA1 | BRCA2 | BRD2 | BRD3 |
BRD4 | BRIP1 | BTG1 | BTK | BTLA | CADM1 | CALR | CARD11 | CASP5 | CASP8 | CBFB | CBL |
CCDC150 | CCDC168 | CCDC43 | CCL2 | CCL4 | CCN6 | CCND1 | CCND2 | CCND3 | CCNE1 | CD27 | CD274 |
CD276 | CD28 | CD3D | CD3E | CD3G | CD4 | CD40 | CD44 | CD74 | CD79A | CD79B | CD8A |
CDC42 | CDC73 | CDH1 | CDH2 | CDH20 | CDH5 | CDK12 | CDK4 | CDK6 | CDK8 | CDKN1A | CDKN1B |
CDKN2A | CDKN2B | CDKN2C | CDX2 | CEBPA | CENPA | CHD1 | CHD2 | CHD4 | CHEK1 | CHEK2 | CHUK |
CIC | COLEC12 | COP1 | CRBN | CREBBP | CRK | CRKL | CRLF2 | CSF1R | CSF2 | CSF2RA | CSF2RB |
CSF3R | CSNK1A1 | CSNK2A1 | CTCF | CTLA4 | CTNNA1 | CTNNB1 | CUL3 | CUL4A | CUL4B | CUX1 | CXCL10 |
CXCL11 | CXCL9 | CXCR3 | CXCR4 | CYLD | CYP17A1 | CYP4Z2P | DAXX | DCUN1D1 | DDHD1 | DDR2 | DDX41 |
DEFB105A | DHX15 | DICER1 | DIS3 | DNAJB1 | DNMT1 | DNMT3A | DNMT3B | DOCK2 | DOCK3 | DOT1L | E2F3 |
EED | EGFL7 | EGFR | EIF1AX | EIF4A2 | EIF4E | ELMO1 | ELOC | EML4 | EMP1 | EMSY | EP300 |
EPCAM | EPHA3 | EPHA5 | EPHA6 | EPHA7 | EPHB1 | EPHB4 | EPHB6 | ERBB2 | ERBB3 | ERBB4 | ERCC1 |
ERCC2 | ERCC3 | ERCC4 | ERCC5 | ERG | ERRFI1 | ESR1 | ETS1 | ETV1 | ETV4 | ETV5 | ETV6 |
EWSR1 | EYA2 | EZH2 | FANCA | FANCC | FANCD2 | FANCE | FANCF | FANCG | FANCI | FANCL | FANCM |
FAS | FAT1 | FAT3 | FBXW7 | FGF1 | FGF10 | FGF12 | FGF14 | FGF19 | FGF2 | FGF23 | FGF3 |
FGF4 | FGF5 | FGF6 | FGF7 | FGF8 | FGF9 | FGFR1 | FGFR2 | FGFR3 | FGFR4 | FH | FLCN |
FLI1 | FLT1 | FLT3 | FLT4 | FOXA1 | FOXL2 | FOXO1 | FOXO3 | FOXP1 | FOXP3 | FRS2 | FUBP1 |
FYN | GABRA6 | GAS6 | GATA1 | GATA2 | GATA3 | GATA4 | GATA6 | GEN1 | GID4 | GLI1 | GNA11 |
GNA13 | GNAQ | GNAS | GPS2 | GREM1 | GRIN2A | GRM3 | GSK3B | GUCY1A2 | GZMA | GZMB | GZMH |
H1-2 | H2AC13 | H2BC5 | H3-3A | H3-3B | H3-4 | H3-5 | H3C1 | H3C11 | H3C12 | H3C13 | H3C14 |
H3C15 | H3C2 | H3C3 | H3C4 | H3C6 | H3C7 | H3C8 | HGF | HLA-A | HLA-B | HLA-C | HLA-DRA |
HLA-E | HLA-F | HLA-G | HNF1A | HNRNPK | HOXA3 | HOXB13 | HRAS | HSD3B1 | HSP90AA1 | ICOSLG | ID3 |
IDH1 | IDH2 | IDO1 | IDO2 | IFITM1 | IFITM3 | IFNA1 | IFNB1 | IFNG | IFNGR1 | IGF1 | IGF1R |
IGF2 | IGF2R | IKBKE | IKZF1 | IL10 | IL12A | IL12B | IL2 | IL23A | IL6 | IL7R | INHA |
INHBA | INPP4A | INPP4B | INSR | IRF2 | IRF4 | IRS1 | IRS2 | ITGAE | ITK | JAK1 | JAK2 |
JAK3 | JUN | KAT6A | KDM5A | KDM5C | KDM6A | KDR | KEAP1 | KEL | KIF5B | KIT | KLF4 |
KLHL6 | KMT2A | KMT2B | KMT2C | KMT2D | KNSTRN | KRAS | LAG3 | LAMP1 | LATS1 | LATS2 | LMO1 |
LRP1B | LRP6 | LTK | LTN1 | LYN | LZTR1 | MAGI2 | MAGOH | MALT1 | MAML1 | MAP2K1 | MAP2K2 |
MAP2K4 | MAP3K1 | MAP3K13 | MAP3K14 | MAP3K4 | MAPK1 | MAPK3 | MAX | MCL1 | MDC1 | MDM2 | MDM4 |
MED12 | MEF2B | MEF2C | MEN1 | MET | MGA | MITF | MLH1 | MLLT3 | MPL | MRE11 | MSH2 |
MSH3 | MSH6 | MST1 | MST1R | MTMR11 | MTOR | MTR | MUTYH | MYB | MYC | MYCL | MYCN |
MYD88 | MYL1 | MYLK | MYO18A | MYOD1 | NAB2 | NBN | NCOA3 | NCOR1 | NDUFC2 | NEGR1 | NF1 |
NF2 | NFE2L2 | NFKBIA | NKX2-1 | NKX2-8 | NKX3-1 | NOMO1 | NOTCH1 | NOTCH2 | NOTCH3 | NOTCH4 | NPM1 |
NRAS | NRG1 | NSD1 | NSD3 | NTRK1 | NTRK2 | NTRK3 | NUP93 | NUTM1 | PAK1 | PAK3 | PAK5 |
PALB2 | PARP1 | PARP2 | PARP3 | PARP4 | PAX3 | PAX5 | PAX7 | PAX8 | PBRM1 | PCDH17 | PDCD1 |
PDCD1LG2 | PDE4D | PDGFRA | PDGFRB | PDK1 | PDPK1 | PGR | PHF6 | PHLPP2 | PHOX2B | PIK3C2B | PIK3C2G |
PIK3C3 | PIK3CA | PIK3CB | PIK3CD | PIK3CG | PIK3R1 | PIK3R2 | PIK3R3 | PIM1 | PKHD1 | PLCG1 | PLCG2 |
PLK2 | PMAIP1 | PMS1 | PMS2 | PNP | PNRC1 | POLD1 | POLE | PPARG | PPM1D | PPP2R1A | PPP2R2A |
PPP6C | PRDM1 | PREX2 | PRF1 | PRKAR1A | PRKCI | PRKDC | PRKN | PRPF40B | PRSS8 | PTCH1 | PTCH2 |
PTEN | PTK2 | PTPN11 | PTPRC | PTPRD | PTPRS | PTPRT | PUS3 | QKI | RAB35 | RAC1 | RAC2 |
RAD17 | RAD21 | RAD50 | RAD51 | RAD51B | RAD51C | RAD51D | RAD52 | RAD54L | RAF1 | RANBP2 | RARA |
RASA1 | RB1 | RBM10 | RBMXL1 | RECQL4 | REL | RET | RFX1 | RHEB | RHOA | RHOB | RICTOR |
RIT1 | RNF19B | RNF43 | ROBO1 | ROBO2 | ROS1 | RPA1 | RPS6KA4 | RPS6KB1 | RPS6KB2 | RPTOR | RUNX1 |
RUNX1T1 | RUNX3 | RYBP | SDHA | SDHAF2 | SDHB | SDHC | SDHD | SEC31A | SEMA3A | SEMA3E | SET |
SETBP1 | SETD2 | SF3A1 | SF3B1 | SH2B3 | SH2D1A | SHQ1 | SKP2 | SLC22A9 | SLIT2 | SLITRK3 | SLX4 |
SMAD2 | SMAD3 | SMAD4 | SMAP1 | SMARCA1 | SMARCA4 | SMARCB1 | SMARCD1 | SMC1A | SMC3 | SMO | SNCAIP |
SOCS1 | SOX10 | SOX17 | SOX2 | SOX9 | SPEN | SPOP | SPTA1 | SRC | SRSF1 | SRSF2 | SRSF7 |
STAG1 | STAG2 | STAT3 | STAT4 | STAT5A | STAT5B | STC1 | STK11 | STK40 | SUFU | SUZ12 | SYK |
TACC3 | TAF1 | TBX22 | TBX3 | TCF3 | TCF7L2 | TENT5C | TERC | TERT | TET1 | TET2 | TFE3 |
TFRC | TGFBR1 | TGFBR2 | TIAF1 | TIGIT | TIPARP | TMEM127 | TMPRSS2 | TNF | TNFAIP3 | TNFRSF14 | TNFRSF18 |
TNFRSF4 | TNFSF13B | TNKS | TNKS2 | TOP1 | TOP2A | TP53 | TP63 | TRAF2 | TRAF7 | TRRAP | TSC1 |
TSC2 | TSHR | U2AF1 | U2AF2 | USP9X | VEGFA | VHL | VSIR | VTCN1 | WNT1 | WT1 | WWP1 |
XBP1 | XIAP | XPO1 | XRCC2 | XRCC3 | YAP1 | YES1 | ZBTB2 | ZBTB7A | ZFHX3 | ZNF217 | ZNF703 |
ZRSR2 |
[RNA – Gene List]
ABL1 | AKT3 | ALK | AR | AXL | BAIAP2L1 | BCL2 | BRAF | BRCA1 | BRCA2 | CCDC6 | CD74 |
CDK4 | CSF1R | EGFR | EML4 | ERBB2 | ERG | ESR1 | ETS1 | ETV1 | ETV4 | ETV5 | ETV6 |
EWSR1 | FGFR1 | FGFR2 | FGFR3 | FGFR4 | FLI1 | FLT1 | FLT3 | JAK2 | KDR | KIF5B | KIT |
KMT2A | LMNA | MET | MLLT3 | MSH2 | MYC | NCOA4 | NOTCH1 | NOTCH2 | NOTCH3 | NRG1 | NTRK1 |
NTRK2 | NTRK3 | PAX3 | PAX7 | PAX8 | PDGFRA | PDGFRB | PIK3CA | PPARG | RAF1 | RET | ROS1 |
RPS6KB1 | SEPTIN14 | SLC34A2 | SLC45A3 | TACC3 | TFG | TMPRSS2 | TPM3 |
Related Products
Designed to detect all types of variants and immuno-oncology markers including gene rearrangement in various somatic cancer-related and cancer-associated genes
Comprehensive and specialized hereditary cancer panel for analyzing 31 oncogenes associated with inherited cancer
Covers all major genes, including coding exons, concerning mutation for FDA approved therapies
Designed to detect all types of variants and immuno-oncology markers including gene rearrangement in various somatic cancer-related and cancer-associated genes
Comprehensive and specialized hereditary cancer panel for analyzing 31 oncogenes associated with inherited cancer
Covers all major genes, including coding exons, concerning mutation for FDA approved therapies
End-to-end complete Bioinformatics solution; Trust CAS with your BI analysis
Resources
Technical Resources
[Product Sheet] Celemics CancerScreen Focus
[Product Sheet] Celemics CancerScreen Core/50/100/400
[Product Sheet] Celemics CancerScreen Comprehensive
[Product Sheet] Celemics CancerScreen CUP(Cancer of Unknown Primary)
Celemics Target Enrichment Panel Overview
Celemics Products & Servics
Safety Data Sheets
If you require the latest MSDS file, please contact us via ‘Contact Us‘.
MSDS_CancerScreen Panels_Illumina
MSDS_CancerScreen Panels_Thermo Fisher
MSDS_CancerScreen Panels_MGI
References
Cancer Research and Treatment
Varlitinib and Paclitaxel for EGFR/HER2 Co-Expressing Advanced Gastric Cancer: A Multicenter Phase Ib/II Study (K-MASTER-13)
Koo DH, Jung M, Kim YH, Jeung HC, Zang DY, Bae WK, Kim H, Kim HS, Lee CK, Kwon WS, Chung HC. Varlitinib and Paclitaxel for EGFR/HER2 Co-Expressing Advanced Gastric Cancer: a Multicenter Phase Ib/II Study (K-MASTER-13). Cancer Research and Treatment. 2024 Apr 29.
10.4143/crt.2023.1324
Cancers
Discovery and Validation of Survival-Specific Genes in Papillary Renal Cell Carcinoma Using a Customized Next-Generation Sequencing Gene Panel
Hwang J, Bang S, Choi MH, Hong SH, Kim SW, Lee HE, Yang JH, Park US, Choi YJ. Discovery and Validation of Survival-Specific Genes in Papillary Renal Cell Carcinoma Using a Customized Next-Generation Sequencing Gene Panel. Cancers. 2024 Jan;16(11):2006.
10.3390/cancers16112006
Frontiers in Neurology
Case report: Compound heterozygous variants detected by next-generation sequencing in a Tunisian child with ataxia-telangiectasia
Ammous-Boukhris N, Abdelmaksoud-Dammak R, Ben Ayed-Guerfali D, Guidara S, Jallouli O, Kamoun H, Charfi Triki C, Mokdad-Gargouri R. Case report: Compound heterozygous variants detected by next-generation sequencing in a Tunisian child with ataxia-telangiectasia. Frontiers in Neurology. 2024 May 31;15:1344018.
10.3389/fneur.2024.1344018
Scientific Reports
Sex-specific survival gene mutations are discovered as clinical predictors of clear cell renal cell carcinoma
Hwang J, Lee HE, Han JS, Choi MH, Hong SH, Kim SW, Yang JH, Park U, Jung ES, Choi YJ. Sex-specific survival gene mutations are discovered as clinical predictors of clear cell renal cell carcinoma. Scientific Reports. 2024 Jul 9;14(1):15800.
10.1038/s41598-024-66525-9